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Abstract
Understanding interactions between colloids (or nanoparticles) immersed in a phase-separating
binary mixture is of both fundamental and technological importance. Here we report a novel
type of interparticle attractive interaction of a purely dynamic origin, which is found by a
coarse-grained numerical simulation. Due to surface wetting effects, there are strong diffusion
fluxes towards particles just after the initiation of phase separation of the matrix binary liquid
mixture. The flux in the region between particles soon becomes weaker than that in the other
regions since the depletion zones formed around particles overlap selectively between the
particles. The resulting imbalance of the diffusion flux induces interparticle attractive
interactions, i.e., the osmotic force pushes particles closer. We confirm that this wetting-induced
‘dynamic’ depletion force can be stronger than a van der Waals force and a capillary force that
is induced by the interfacial tension, and thus plays a dominant role in the early stage of particle
aggregation. We note that this novel interaction originating from the momentum conservation
law may be generic to particles acting as diffusional sinks or sources.

(Some figures in this article are in colour only in the electronic version)

Suspensions of colloids or nanoparticles in complex fluids,
such as liquid crystals [1] and polymer solutions [2], have
attracted considerable attention from the fundamental and
practical importance viewpoints. Colloidal suspensions in
a binary mixture of simple liquids also exhibit quite rich
behaviour [3]. For example, when colloids are suspended in
a near critical binary mixture above the critical temperature Tc,
preferential wetting of one of the components [4, 5] on colloid
surfaces leads to colloid aggregation or flocculation [6, 7].
The underlying mechanism has been intensively studied
theoretically [7–13]. The confinement effect on the
compositional fluctuations also generates an interaction
between particle surfaces. This force between particles, whose
strength and direction depend upon the wettability of the
particles, is known as a critical Casimir force [13, 14].

It is widely known that below Tc wetting phenomena
drastically affect phase separation and the resulting pattern

evolution [15, 16]. Addition of particles into a binary liquid
mixture induces complex dynamic couplings between wetting
and phase separation due to the mobility of particles and
produces a rich variety of morphologies [16–27]. When a
particle equally wets the two phase-separated phases, then such
neutral particles can sit just on the domain interface, leading
to Pickering emulsions [28] or noble glassy bicontinuous
structure [29, 30], depending upon the composition symmetry.
In most cases, however, one of the phases preferentially
wets particles. In such a case, particles are included in
the phase more wettable on a particle surface, which is the
situation we consider here. Upon phase separation, wetting
layers are quickly formed on particle surfaces [31] and then
phase separation proceeds so that the phase more wettable for
particles tends to include all the particles in it. This problem
has been intensively studied both experimentally [16–20] and
numerically [22–27].
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One of the most drastic effects that affect the structure
formation of particles in a binary mixture is capillary
condensation [32–34], which produces a force so as to reduce
the interfacial energy of the wetting layers bridging more than
two particles. This effect also plays a crucial role in wet
granular matter [35]. So far, this problem has been studied on
the basis of ‘energetic’ interactions stemming from the wetting
and interfacial energy. In our previous paper [36], however,
we found a novel type of interaction of a purely dynamic
origin, which can play an important role in the early stage
of colloidal aggregation in a phase-separating binary mixture.
This interaction is induced by the coupling of diffusion flux
towards particles under the momentum conservation. Because
of its intrinsically nonlocal nature, the interaction is non-
additive. In this communication, we discuss the physical
mechanism of this interaction in detail.

To study this problem of colloidal aggregation in
a phase-separating fluid mixture, it is quite essential
to take into account hydrodynamic interactions between
particles [31]. Several numerical methods have been
employed to study phase separation of binary fluids containing
particles [22–27, 37]. On the basis of the ‘fluid particle
dynamics (FPD)’ method [38, 39], we also developed a
numerical method for describing dynamical couplings between
particles, concentration and flow fields [36]. We note that
our FPD method treats flow in a system in terms of a
continuous field variable, which allows us to incorporate
various continuous field variables (order parameters) into a
host fluid without difficulty. Here we briefly explain our FPD
method. Coarse-grained variables relevant for the physical
description of phase-separation dynamics of a fluid mixture
containing particles are particle position {ri }, concentration
field ψ , and fluid velocity field v. Index i stands for particle i .
We describe fluid particle i using a hyperbolic tangent function
as φi(r) = [tanh{(a−|r−ri |)/d}+1]/2, where a and d are the
radius and interfacial width of a particle, respectively [38, 39].
We employ the following free energy functional for a binary
mixture containing particles:

F{ψ,φ} =
∫

dr[ f (ψ)− Wdψ|∇φ|2 − χ�ψ2φ]. (1)

The first term of the right-hand side (rhs) of equation (1)
corresponds to the Ginzburg–Landau type mixing free energy
of a binary mixture with f (ψ) = τψ2/2 + uψ4/4 +
K |∇ψ|2/2, where τ , u and K are constants (note that τ > 0
before quench, t < 0). The second term stands for the
wetting interaction between a binary mixture and a particle
surface (represented as |∇φ|2 in our scheme). W represents
the strength of this wetting interaction; here W > 0 means that
the phase of ψ > 0 favours a particle surface. The third term is
introduced such that the concentration field inside each particle
is kept to ψ ≈ ψ̄ . χ (>0) is the coupling constant and ψ̄ is the
average of ψ . Note that �ψ = ψ − ψ̄ .

The time developments of ψ and v are described by

∂ψ

∂ t
= −v ·∇ψ + L∇2μ, (2)

ρ
∂v

∂ t
= G − ψ∇μ − ∇ p + ∇ · [η{∇v + (∇v)T}] , (3)

where μ is the chemical potential defined as μ = δF/δψ . L
and ρ are, respectively, the kinetic coefficient and the density,
both of which are assumed to be independent of ψ . The
characteristic length and time of phase separation are given as
ξ = (−K/τ)1/2 and tξ = ξ 2/L, respectively. η is the space-
dependent viscosity, which represents the particle distribution
in our FPD scheme [38, 39]: η(r) = η̄ + �η

∑
i φi(r).

The first term of the rhs of equation (3) is the force field
stemming from particles: G(r) = ∑

i Giφi (r). Here Gi

is the force acting on particle i , which is given by Gi =
−(∂/∂ri)

∑
j �=i V (|ri − r j |)− κ(ri − r

f
i ), where the second

term of the rhs is introduced to fix the i th particle around the
position r

f
i and κ is a spring constant. We employ the repulsive

part of the Lennard-Jones potential as a direct interparticle
interaction; V (r) = 4ε{(2a/r)12 − (2a/r)6 + 1/4} for r <
27/6a and V (r) = 0 for r > 27/6a. The second term of the rhs
of equation (3) represents the force stemming from the osmotic
pressure [40]. p is a part of pressure, which is imposed to
satisfy the incompressibility condition ∇ · v = 0. The motion
of particle i is given by the averaged velocity field inside the
particle as [38, 39]

dri

dt
=

∫
dr′v(r′)φi (r

′)∫
dr′φi(r′)

. (4)

Hereafter we set the parameters as u = 1, K = 1
and L = 1. We solve the above kinetic equations with the
explicit Euler scheme using the lattice spacing �x = 1 and
the time increment �t = 0.01 in 2D and �t = 0.005 in
3D. Equation (3) is solved by the marker and cell (MAC)
method with a staggered lattice. To get rid of the inertia
effect, we iterate the calculation of equation (3) to satisfy
|ρ∂v/∂ t| < 10−2|G − ψ∇μ| (Stokes approximation). The
viscosity parameters are set as η̄ = 0.5 and �η = 24.5, which
means that the viscosity ratio between the inner and outer parts
of a particle is 50. The other parameters are set as ξ = d = 1,
ε = 1, χ = 2, and W = 8 (except for two cases in figure 5(a)).

Figure 1(a) shows the behaviour of two free (unbound)
particles (κ = 0) in a phase-separating mixture. At t = 0,
we quench the system from the one-phase region (τ = 1)
to the coexistence region (τ = −1). The volume fraction
of the more wettable phase � = (ψ̄ + 1)/2 is 0.10. The
simulation is performed in 2D (1282) and the particle radius
and the initial separation are, respectively, a = 8 and r0 =
|rA(0) − rB(0)| = 36, where A and B stand for particles.
Since the volume fraction of the more wettable minority phase
is very low, the phase separation proceeds via a nucleation and
growth (NG) mechanism. After the quench, the more wettable
component nucleates on the particle surface to cover it (t =
10tξ ): heterogeneous nucleation on particle surfaces. Then,
the particles start to approach each other before their interfaces
overlap (t = 50tξ ). Eventually, they contact and share the
wetting layer (t = 200tξ ). To check whether this interaction
is relevant only to the early stage, we quench the system while
fixing the particle positions (κ = 50) and then (at t = 5000tξ )
we release the particles by setting κ = 0. Figure 1(b) shows
the behaviour of the two particles in a phase-separated mixture
after the release. Although the interfaces are closer than in
case (a), the particles do not move so much. Figure 1(c) shows
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Figure 1. Behaviour of two particles in (a) phase-separating and
(b) phase-separated binary mixtures. The brightness represents the
compositional order parameter ψ . The brighter phase is more
wettable for the particle surface. Numbers in the pictures represent
t/tξ . (c) Temporal change in the separation between the two
particles,�r = |rA − rB| − 27/6a. •: phase-separating mixture;◦: phase-separated mixture.

the temporal change in the separation between the two particles
for cases (a) and (b). For a phase-separating mixture (case (a)),
the particles attract each other until final contact. For a phase-
separated mixture, on the other hand, there is no such strong
attraction; the interparticle separation even slightly increases
during the time since a particle tends to sit at the centre of the
surrounding liquid droplet.

Next we show the temporal change in strength of the
attractive force for different initial particle separations in
figure 2 (3D). Here each particle is connected to a fixed point
with a spring of κ = 20 such that the strength of the force
can be measured as F = κ |r − r f |. After the quench, the
force grows quickly with time and then it starts to decrease
gradually at a certain time. We can see that the force acting
on the particles is stronger and the time at which the force has
the maximum is shorter for the smaller interparticle separation.
When the particle separation becomes smaller (r0/a < 4), the
force has a second peak. This second peak emerges when
the wetting layers of the two particles overlap. Thus it is a
consequence of the ordinary capillary interaction. During our
simulation time, the wetting layers of the two particles do not
contact each other for r0/a > 4.

The dependence of the height of the first peak of the force
on the particle separation is plotted in figure 3(a) (3D). The
larger the interparticle separation, the weaker the force. The
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Figure 2. Dependence of the temporal change in the force acting on
particles in a phase-separating mixture upon the particle separation.
r0/a is increasing from the top to the bottom. The simulations are
performed in 3D (1283). ψ̄ = −0.8(� = 0.10) and a = 6.

force strength approximately obeys F ∝ (r0/a)−5. According
to the two-scale factor universality [40], the interfacial tension
is estimated as σ ≈ 0.1kBT/ξ 2 ≈ 4 μN m−2, for the
interfacial width of ξ = 10 nm. For this case, F = 100(σξ) ≈
4 pN. Thus, this interaction can be much stronger and longer
ranged than the van der Waals interaction and can have a
significant influence on the aggregation behaviour.

Here we consider the physical origin of the interaction.
As shown in figure 2, this interaction varies with time and
the peaking time depends upon the interparticle separation.
This indicates that the force is not produced by a
potential. Tanaka previously proposed a mechanism of droplet
coarsening in phase-separating fluid mixture due to a coupling
between diffusion and hydrodynamic flow under momentum
conservation [41, 42]. It predicts that such a dynamic coupling
can induce attractive interactions between growing droplets.
In the present system, particles behave as growing nuclei of
phase separation, due to the surface wetting effects. Thus, we
can apply this mechanism to particles immersed in a phase-
separating fluid mixture.

Figure 4(a) shows the simulated diffusion flux −L∇μ at
t = 10tξ . For an isolated particle, the diffusion flux and
the resulting osmotic force −ψ∇μ are spherically symmetric.
When two particles are placed nearby, on the other hand, the
diffusion fluxes towards them are strongly coupled with each
other. The more wettable component is depleted in between the
particles and the resulting imbalance of the osmotic pressure
pushes one particle towards another. As shown in figure 4(b),
this induces the hydrodynamic flow, which transports one
particle towards another. It is worth noting that this asymmetric
diffusion flux leads to the non-concentric shape of droplets
when the particle positions are fixed, as shown in figure 1(b)
(t/tξ = 0).

To make a more quantitative estimate, we consider a
single particle placed in a uniform concentration gradient. The
situations that we consider here are the metastable state, where
heterogeneous nucleation occurs selectively on the particle
surface, and the one-phase region, where the prewetting
layer is formed on the particle surface (see ψ̄ < −1 in
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Figure 3. (a) Dependence of the maximum force strength on the particle separation, which is scaled as r0/a. (b) Dependence of the time at
which the attractive force is strongest on the particle separation. The simulations are performed in 3D (1283). ψ̄ = −0.8(� = 0.10) and
W = 8.

Figure 4. Simulated patterns of (a) diffusion flux −L∇μ and (b) flow field v. The simulation is performed in 2D (1282).
ψ̄ = −0.8(� = 0.10) and a = 8.
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Figure 5. (a) The dependence of the maximum force strength Fm upon the averaged concentration ψ̄ for different wettabilities W . The
simulations are performed in 3D (1283). a = 6 and r0 = 24. The lines are guides to the eye. Even in the one-phase region (hatched area), this
attractive interaction is observed. (b) The profiles of the chemical potential μ around a single particle at t = 50tξ . The particle radius is a = 6
and the wettability is W = 8. As ψ̄ approaches the spinodal point (ψ̄ = −1/

√
3), the profile becomes sharper due to the nonlinear effects,

which are ignored in our analytical treatment.

figure 5(a)). We do not consider the unstable state, where
spinodal decomposition (SD) in the bulk creates randomly
oriented diffusion fluxes, which overwhelm the directional flux
towards the particle. Then, the concentration field, chemical
potential, and pressure can be expressed as X = X0 + X1(r)+
X2(r) cos θ , where X = ψ , μ, and p, respectively, in a
spherical coordinate system (r, θ, ϕ). We set the coordinate
such that the particle is placed at r = 0 and the concentration
gradient is along θ = 0. Then, the concentration gradient is
produced by employing ψ2(r) = αr . Here we consider a case

of weak gradient: αa 	 1. The flow field is also expressed as
v = vr (r) cos θ r̂+vθ(r) sin θ θ̂ , where r̂ and θ̂ are unit vectors
of the spherical coordinate. Note that the ϕ-component of the
flow should be zero from the symmetry. The hydrodynamic
equations outside the particle, −ψ∇μ− ∇ p + η̄∇2v = 0 and
∇ · v = 0, impose a constraint on the linear order terms of
cos θ and sin θ , which yields the following relation [43]:

2(ψ ′
1μ2 − ψ2μ

′
1)− η̄(r 2v′′′′

r + 8rv′′′
r + 8v′′

r − 8v′
r/r) = 0, (5)

where the prime represents the derivative in terms of r . Here
the incompressible condition, vθ = −vr − rv′

r/2, is used.
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Hereafter, we assume that the diffusion towards the particle
surface is much stronger than that along the surface. Thus, we
neglect the anisotropic part of the chemical potential and set
μ2 = 0.

Immediately after the quench, the wetting layer is formed
on the particle surface. Due to the conservation of ψ , the
depletion zone of the more wettable component is formed
around this wetting layer. The particle surface behaves
as a sink, towards which the more wettable component is
transported via diffusion. Here express the sink as βδ(|r|−a),
where β represents the strength of the sink and β ∼ W/τ̄ in
the first approximation. Near the binodal line, the conditions
�ψ 	 1 and |ψ̄ + 1| 	 1 are satisfied, which allows
us to neglect the nonlinear effects. Then, the concentration
field around the particle approximately obeys the diffusion
equation ∂�ψ/∂ t ≈ D∇2�ψ . Here D = τ̄ L is the diffusion
coefficient, where τ̄ = τ + 3uψ̄2. Its solution in the far field
is given by �ψ ∝ 4πa2βe−r2/4Dt/(4πDt)3/2, where 4πa2

is the surface area of the particle. The chemical potential is
approximately given asμ = τ̄�ψ . By substituting this intoμ1

in equation (5), we derive vr (r) = −αβτ̄a2{2e−r2/4Dtr
√

Dt +√
π(r 2−2Dt) erf(r/

√
4Dt)}/(2√

πη̄r 3). From the velocity of
the particle surface vr (a), we obtain the particle drift velocity
as v ≈ −αβτ̄a2/(3

√
πη̄

√
Dt).

Next we consider a pair of particles (A and B) separated
by r = r0 in a phase-separating fluid mixture. Here
the concentration field formed around one particle acts as
the concentration gradient for another. The concentration
gradient at particle B is given by α ≈ −∂�ψ/∂r |r=r0 =
βa2r0e−r2

0 /4Dt/{4√
π(Dt)5/2} and the resulting approaching

velocity is estimated as v ≈ −β2τ̄a4r0e−r2
0 /4Dt/{12πη̄(Dt)3}.

This velocity becomes maximum at tm = r 2
0/(2D) and the

maximum velocity is vm ≈ −2e−1/2β2τ̄a4/(3πη̄r 5
0 ). The

maximum force acting on the particle pair is, thus, estimated as
Fm = 6πη̄avm = −4e−1/2β2τ̄ (a/r0)

5. After t = tm, the force
starts to becomes weaker with time due to the homogenization
of the chemical potential. These relations, Fm ∝ (r0/a)−5

and tm ∝ r 2
0 , are consistent with the results of our numerical

simulations shown in figures 3(a) and (b), respectively. When
the particle separation is less than the particle size, i.e., for
(r0 − 2a) < a, a particle pair is approximately regarded as
a pair of flat walls, which may lead to the weaker dependence
of Fm on r0. Such a tendency can be seen in figure 3(a).

Figure 5(a) shows the numerical results of the depen-
dences of Fm on ψ̄ for different wettabilities W . The force
strength increases with increasing W , as expected. Each curve
has a peak whose position ψ̄p shifts to lower ψ̄ with an increase
in W . Here we qualitatively explain this behaviour. Provided
that β ∼ W/τ̄ , the force strength is proportional to W 2/τ̄ .
This means that the force strength monotonically increases to-
wards the spinodal line, where τ̄ becomes zero. This increase
simply reflects the decrease of the energy cost for producing
the wetting layer with a decrease in τ̄ . However, the above
calculation cannot be used in the vicinity of the spinodal line,
since there the nonlinear effects can no longer be neglected. In
the mean-field approximation, the spinodal concentration is lo-
cated at |ψ̄ | < 1/

√
3(≈0.58). For the metastable region near

the spinodal line, we confirmed by simulations that the con-
centration profile becomes sharper than that expected from the

above simple diffusion equation due to the nonlinear effects, as
shown in figure 5(b). Thus, the depletion zone does not reach
the neighbouring particle. This qualitatively explains the weak-
ening of the force. The competition between the weakening of
the restoring force for concentration fluctuations and the non-
linear effects probably determines the position of the peak ψ̄p.
The nonlinear effects become dominant at lower ψ̄ for larger
W . This explains the shift of the peak position towards lower
ψ̄ with an increase in W .

It may be worth stressing that this attraction is observed
even for mixtures of ψ̄ < −1, in which phase separation does
not occur in the bulk (see figure 5(a)). Here a temperature
quench thickens the prewetting layer on the particle surface,
which accompanies the inward diffusion flux. This flux can
induce attractive interactions, in the same manner as in phase
separation.

In the unstable region, on the other hand, the diffusion
fluxes far from the particle surface are not necessarily towards
the particle surfaces for SD, since the system intrinsically
becomes unstable. This prevents the formation of the well-
developed depletion profile. Thus, when the particle separation
is much larger than ξ , the wetting-induced depletion interaction
no longer becomes effective, although it still remains [36].

In summary, we found a new type of attractive interaction
between colloids in a phase-separating binary liquids. We
demonstrated that this interaction is purely of a dynamic
origin and a consequence of a dynamical coupling between
the wetting-induced diffusion fluxes towards particles. This
interaction may be confirmed experimentally by a direct
measurement of the interparticle force with a laser tweezers.
The temporal change in the force as in figure 2 may be
observed. This interaction should quickly decay after the
early stage of phase separation1. This characteristics may
allow us to distinguish it from capillary force. Other types
of numerical simulations, such as molecular dynamics [37]
and lattice Boltzmann method [29], may also be useful for
accessing the problem.

Finally, we note that this interaction should be generic
to particles acting as diffusional sinks or sources. Thus, the
mechanism may be relevant to a currently popular topic of
particles self-propelled by diffusion phenomena [44]. Our
study indicates that interparticle interactions can be induced
not only by energetic or entropic origins, but also by a ‘purely’
dynamic origin. This may represent a new class of interparticle
interaction that originates from a spatial coupling of a flux
under the momentum conservation law.

This work was partially supported by a grant-in-aid from
the Ministry of Education, Culture, Sports, Science and
Technology, Japan.
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